

Computer Organization and Architecture
Designing for Performance

Eleventh Edition

Computer Organization and Architecture
Designing for Performance

Eleventh Edition

William Stallings

330 Hudson Street, New York, NY 10013

Senior Vice President Courseware Portfolio Management: Marcia J. Horton

Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge

Executive Portfolio Manager: Tracy Johnson

Portfolio Management Assistant: Meghan Jacoby

Managing Content Producer: Scott Disanno

Content Producer: Amanda Brands

R&P Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications, Inc. (LSC): Maura Zaldivar-Garcia

Inventory Manager: Bruce Boundy

Field Marketing Manager: Demetrius Hall

Product Marketing Manager: Yvonne Vannatta

Marketing Assistant: Jon Bryant

Cover Designer: Black Horse Designs

Cover Art: Shuttersstock/Shimon Bar

Full-Service Project Management: Kabilan Selvakumar, SPi Global

Printer/Binder: LSC Communications, Inc.

Copyright © 2019, 2016, 2013, 2010, 2006, 2003, 2000 by Pearson Education, Inc., Hoboken,
New Jersey 07030.

All rights reserved. Manufactured in the United States of America. This publication is protected by
copyright and permissions should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions department, please
visit http://www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages with, or arising out of, the
furnishing, performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data

Names: Stallings, William, author.

Title: Computer organization and architecture : designing for performance / William Stallings.

Description: Eleventh edition. | Hoboken : Pearson Education, 2019. | Includes bibliographical
references and index.

Identifiers: LCCN 0134997190 | ISBN 9780134997193

Subjects: LCSH: Computer organization. | Computer architecture.

Classification: LCC QA76.9.C643 S73 2018 | DDC 004.2/2—dc23 LC record available at
https://lccn.loc.gov/

1 18

ISBN-10: 0-13-499719-0

ISBN-13: 978-0-13-499719-3

To Tricia my loving wife, the kindest and gentlest person

Contents

Preface xiii

About the Author xxii

Chapter 1 Basic Concepts and Computer Evolution 1
1.1 Organization and Architecture 2

1.2 Structure and Function 3

1.3 The IAS Computer 11

1.4 Gates, Memory Cells, Chips, and Multichip Modules 17

1.5 The Evolution of the Intel x86 Architecture 23

1.6 Embedded Systems 24

1.7 ARM Architecture 29

1.8 Key Terms, Review Questions, and Problems 34

Chapter 2 Performance Concepts 37
2.1 Designing for Performance 38

2.2 Multicore, MICs, and GPGPUs 44

2.3 Two Laws that Provide Insight: Ahmdahl’s Law and Little’s Law 45

2.4 Basic Measures of Computer Performance 48

2.5 Calculating the Mean 51

2.6 Benchmarks and SPEC 59

2.7 Key Terms, Review Questions, and Problems 66

Chapter 3 A Top-Level View of Computer Function and Interconnection 72
3.1 Computer Components 73

3.2 Computer Function 75

3.3 Interconnection Structures 90

3.4 Bus Interconnection 92

3.5 Point-to-Point Interconnect 94

3.6 PCI Express 99

3.7 Key Terms, Review Questions, and Problems 107

Chapter 4 The Memory Hierarchy: Locality and Performance 112
4.1 Principle of Locality 113

4.2 Characteristics of Memory Systems 118

4.3 The Memory Hierarchy 121

4.4 Performance Modeling of a Multilevel Memory Hierarchy 128

4.5 Key Terms, Review Questions, and Problems 135

 Chapter 5 Cache Memory 138
5.1 Cache Memory Principles 139

5.2 Elements of Cache Design 143

5.3 Intel x86 Cache Organization 165

5.4 The IBM z13 Cache Organization 168

5.5 Cache Performance Models 169

5.6 Key Terms, Review Questions, and Problems 173

Chapter 6 Internal Memory 177
6.1 Semiconductor Main Memory 178

6.2 Error Correction 187

6.3 DDR DRAM 192

6.4 eDRAM 197

6.5 Flash Memory 199

6.6 Newer Nonvolatile Solid-State Memory Technologies 202

6.7 Key Terms, Review Questions, and Problems 205

Chapter 7 External Memory 210
7.1 Magnetic Disk 211

7.2 RAID 221

7.3 Solid State Drives 231

7.4 Optical Memory 234

7.5 Magnetic Tape 240

7.6 Key Terms, Review Questions, and Problems 242

Chapter 8 Input/Output 245
8.1 External Devices 247

8.2 I/O Modules 249

8.3 Programmed I/O 252

8.4 Interrupt-Driven I/O 256

8.5 Direct Memory Access 265

8.6 Direct Cache Access 271

8.7 I/O Channels and Processors 278

8.8 External Interconnection Standards 280

8.9 IBM z13 I/O Structure 283

8.10 Key Terms, Review Questions, and Problems 287

Chapter 9 Operating System Support 291
9.1 Operating System Overview 292

9.2 Scheduling 303

9.3 Memory Management 309

9.4 Intel x86 Memory Management 320

9.5 ARM Memory Management 325

9.6 Key Terms, Review Questions, and Problems 330

Chapter 10 Number Systems 334
10.1 The Decimal System 335

 10.2 Positional Number Systems 336

10.3 The Binary System 337

10.4 Converting Between Binary and Decimal 337

10.5 Hexadecimal Notation 340

10.6 Key Terms and Problems 342

Chapter 11 Computer Arithmetic 344
11.1 The Arithmetic and Logic Unit 345

11.2 Integer Representation 346

11.3 Integer Arithmetic 351

11.4 Floating-Point Representation 366

11.5 Floating-Point Arithmetic 374

11.6 Key Terms, Review Questions, and Problems 383

Chapter 12 Digital Logic 388
12.1 Boolean Algebra 389

12.2 Gates 394

12.3 Combinational Circuits 396

12.4 Sequential Circuits 414

12.5 Programmable Logic Devices 423

12.6 Key Terms and Problems 428

Chapter 13 Instruction Sets: Characteristics and Functions 432
13.1 Machine Instruction Characteristics 433

13.2 Types of Operands 440

13.3 Intel x86 and ARM Data Types 442

13.4 Types of Operations 445

13.5 Intel x86 and ARM Operation Types 458

13.6 Key Terms, Review Questions, and Problems 466
Appendix 13A Little-, Big-, and Bi-Endian 472

Chapter 14 Instruction Sets: Addressing Modes and Formats 476

14.1 Addressing Modes 477

14.2 x86 and ARM Addressing Modes 483

14.3 Instruction Formats 489

14.4 x86 and ARM Instruction Formats 497

14.5 Key Terms, Review Questions, and Problems 502

Chapter 15 Assembly Language and Related Topics 506
15.1 Assembly Language Concepts 507

15.2 Motivation for Assembly Language Programming 510

15.3 Assembly Language Elements 512

15.4 Examples 518

15.5 Types of Assemblers 523

15.6 Assemblers 523

15.7 Loading and Linking 526

15.8 Key Terms, Review Questions, and Problems 533

Chapter 16 Processor Structure and Function 537
16.1 Processor Organization 538

16.2 Register Organization 539

16.3 Instruction Cycle 545

16.4 Instruction Pipelining 548

16.5 Processor Organization for Pipelining 566

16.6 The x86 Processor Family 568

16.7 The ARM Processor 575

16.8 Key Terms, Review Questions, and Problems 581

Chapter 17 Reduced Instruction Set Computers 586
17.1 Instruction Execution Characteristics 588

17.2 The Use of a Large Register File 593

17.3 Compiler-Based Register Optimization 598

17.4 Reduced Instruction Set Architecture 600

17.5 RISC Pipelining 606

17.6 MIPS R4000 610

17.7 SPARC 616

17.8 Processor Organization for Pipelining 621

17.9 CISC, RISC, and Contemporary Systems 623

17.10 Key Terms, Review Questions, and Problems 625

Chapter 18 Instruction-Level Parallelism and Superscalar Processors 629

18.1 Overview 630

18.2 Design Issues 637

18.3 Intel Core Microarchitecture 646

18.4 ARM Cortex-A8 652

18.5 ARM Cortex-M3 658

18.6 Key Terms, Review Questions, and Problems 663

Chapter 19 Control Unit Operation and Microprogrammed Control 669
19.1 Micro-operations 670

19.2 Control of the Processor 676

19.3 Hardwired Implementation 686

19.4 Microprogrammed Control 689

19.5 Key Terms, Review Questions, and Problems 698

Chapter 20 Parallel Processing 701
20.1 Multiple Processors Organization 703

20.2 Symmetric Multiprocessors 705

20.3 Cache Coherence and the MESI Protocol 709

20.4 Multithreading and Chip Multiprocessors 718

20.5 Clusters 723

20.6 Nonuniform Memory Access 726

20.7 Key Terms, Review Questions, and Problems 730

 Chapter 21 Multicore Computers 736
21.1 Hardware Performance Issues 737

21.2 Software Performance Issues 740

21.3 Multicore Organization 745

21.4 Heterogeneous Multicore Organization 747

21.5 Intel Core i7-5960X 756

21.6 ARM Cortex-A15 MPCore 757

21.7 IBM z13 Mainframe 762

21.8 Key Terms, Review Questions, and Problems 765

Appendix A System Buses 768
A.1 Bus Structure 769

A.2 Multiple-Bus Hierarchies 770

A.3 Elements of Bus Design 772

Appendix B Victim Cache Strategies 777
B.1 Victim Cache 778

B.2 Selective Victim Cache 780

Appendix C Interleaved Memory 782

Appendix D The International Reference Alphabet 785

Appendix E Stacks 788
E.1 Stacks 789

E.2 Stack Implementation 790

E.3 Expression Evaluation 791

Appendix F Recursive Procedures 795
F.1 Recursion 796

F.2 Activation Tree Representation 797

F.3 Stack Implementation 803

F.4 Recursion and Iteration 804

Appendix G Additional Instruction Pipeline Topics 807
G.1 Pipeline Reservation Tables 808

G.2 Reorder Buffers 815

G.3 Tomasulo’s Algorithm 818

G.4 Scoreboarding 822

Glossary 826

References 835

Supplemental Materials

Index 844

 Preface

What’s New in the Eleventh Edition

Since the tenth edition of this book was published, the field has seen continued innovations and
improvements. In this new edition, I try to capture these changes while maintaining a broad and
comprehensive coverage of the entire field. To begin this process of revision, the tenth edition of this
book was extensively reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clarified and tightened,
and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been substantive
changes throughout the book. Roughly the same chapter organization has been retained, but much of
the material has been revised and new material has been added. The most noteworthy changes are
as follows:

Multichip Modules: A new discussion of MCMs, which are now widely used, has been added to
Chapter 1.
SPEC benchmarks: The treatment of SPEC in Chapter 2 has been updated to cover the new
SPEC CPU2017 benchmark suite.
Memory hierarchy: A new chapter on memory hierarchy expands on material that was in the
cache memory chapter, plus adds new material. The new Chapter 4 includes:
—Updated and expanded coverage of the principle of locality

—Updated and expanded coverage of the memory hierarchy

—A new treatment of performance modeling of data access in a memory hierarchy

Cache memory: The cache memory chapter has been updated and revised. Chapter 5 now
includes:
—Revised and expanded treatment of logical cache organization, including new figures, to improve
clarity

—New coverage of content-addressable memory

—New coverage of write allocate and no write allocate policies

—A new section on cache performance modeling.

Embedded DRAM: Chapter 6 on internal memory now includes a section on the increasingly
popular eDRAM.
Advanced Format 4k sector hard drives: Chapter 7 on external memory now includes
discussion of the now widely used 4k sector hard drive format.
Boolean algebra: The discussion on Boolean algebra in Chapter 12 has been expanded with new
text, figures, and tables, to enhance understanding.
Assembly language: The treatment of assembly language has been expanded to a full chapter,
with more detail and more examples.
Pipeline organization: The discussion on pipeline organization has been substantially expanded
with new text and figures. The material is in new sections in Chapters 16 (Processor Structure and
Function), 17 (RISC), and 18 (Superscalar).
Cache coherence: The discussion of the MESI cache coherence protocol in Chapter 20 has been
expanded with new text and figures.

Support of ACM/IEEE Computer Science and Computer Engineering Curricula

The book is intended for both an academic and a professional audience. As a textbook, it is intended
as a one- or two-semester undergraduate course for computer science, computer engineering, and
electrical engineering majors. This edition supports recommendations of the ACM/IEEE Computer
Science Curricula 2013 (CS2013). CS2013 divides all course work into three categories: Core-Tier 1
(all topics should be included in the curriculum); Core-Tier-2 (all or almost all topics should be
included); and Elective (desirable to provide breadth and depth). In the Architecture and Organization
(AR) area, CS2013 includes five Tier-2 topics and three Elective topics, each of which has a number
of subtopics. This text covers all eight topics listed by CS2013. Table P.1 shows the support for the
AR Knowledge Area provided in this textbook. This book also supports the ACM/IEEE Computer
Engineering Curricula 2016 (CE2016). CE2016 defines a necessary body of knowledge for
undergraduate computer engineering, divided into twelve knowledge areas. One of these areas is
Computer Architecture and Organization (CE-CAO), consisting of ten core knowledge areas. This text
covers all of the CE-CAO knowledge areas listed in CE2016. Table P.2 shows the coverage.

Table P.1 Coverage of CS2013 Architecture and Organization (AR) Knowledge Area

IAS Knowledge Units Topics Textbook

Coverage

Digital Logic and

Digital Systems (Tier 2)

Overview and history of computer architecture

Combinational vs. sequential logic/Field programmable

gate arrays as a fundamental combinational sequential

logic building block

Multiple representations/layers of interpretation

(hardware is just another layer)

Physical constraints (gate delays, fan-in, fan-out,

energy/power)

—Chapter

1

—Chapter

12

Machine Level

Representation of Data

(Tier 2)

Bits, bytes, and words

Numeric data representation and number bases

Fixed- and floating-point systems

Signed and twos-complement representations

Representation of non-numeric data (character codes,

graphical data)

—Chapter

10

—Chapter

11

Assembly Level

Machine Organization

(Tier 2)

Basic organization of the von Neumann machine

Control unit; instruction fetch, decode, and execution

Instruction sets and types (data manipulation, control,

I/O)

Assembly/machine language programming

Instruction formats

Addressing modes

Subroutine call and return mechanisms (cross-

—Chapter

1

—Chapter

8

—Chapter

13

—Chapter

reference PL/Language Translation and Execution)

I/O and interrupts

Shared memory multiprocessors/multicore

organization

Introduction to SIMD vs. MIMD and the Flynn

Taxonomy

14

—Chapter

15

—Chapter

19

—Chapter

20

—Chapter

21

Memory System

Organization and

Architecture (Tier 2)

Storage systems and their technology

Memory hierarchy: temporal and spatial locality

Main memory organization and operations

Latency, cycle time, bandwidth, and interleaving

Cache memories (address mapping, block size,

replacement and store policy)

Multiprocessor cache consistency/Using the memory

system for inter-core synchronization/atomic memory

operations

Virtual memory (page table, TLB)

Fault handling and reliability

—Chapter

4

—Chapter

5

—Chapter

6

—Chapter

7

—Chapter

9

—Chapter

20

Interfacing and

Communication (Tier 2)

I/O fundamentals: handshaking, buffering,

programmed I/O, interrupt-driven I/O

Interrupt structures: vectored and prioritized, interrupt

acknowledgment

External storage, physical organization, and drives

Buses: bus protocols, arbitration, direct-memory

access (DMA)

RAID architectures

—Chapter

3

—Chapter

7

—Chapter

8

Functional

Organization (Elective)

Implementation of simple datapaths, including

instruction pipelining, hazard detection, and resolution

Control unit: hardwired realization vs.

microprogrammed realization

—Chapter

16

—Chapter

Instruction pipelining

Introduction to instruction-level parallelism (ILP)

17

—Chapter

18

—Chapter

19

Multiprocessing and

Alternative

Architectures (Elective)

Example SIMD and MIMD instruction sets and

architectures

Interconnection networks

Shared multiprocessor memory systems and memory

consistency

Multiprocessor cache coherence

—Chapter

20

—Chapter

21

Performance

Enhancements

(Elective)

Superscalar architecture

Branch prediction, Speculative execution, Out-of-order

execution

Prefetching

Vector processors and GPUs

Hardware support for multithreading

Scalability

—Chapter

17

—Chapter

18

—Chapter

20

Table P.2 Coverage of CE2016 Computer Architecture and Organization (AR) Knowledge Area

Knowledge Unit Textbook Coverage

History and overview Chapter 1—Basic Concepts and Computer Evolution

Relevant tools, standards and/or

engineering constraints

Chapter 3—A Top-Level View of Computer Function

and Interconnection

Instruction set architecture Chapter 13—Instruction Sets: Characteristics and

Functions

Chapter 14—Instruction Sets: Addressing Modes and

Formats

Chapter 15—Assembly Language and Related Topics

Measuring performance Chapter 2—Performance Concepts

Computer arithmetic Chapter 10—Number Systems

Chapter 11—Computer Arithmetic

Processor organization Chapter 16—Processor Structure and Function

Chapter 17—Reduced Instruction Set Computers

(RISCs)

Chapter 18—Instruction-Level Parallelism and

Superscalar Processors

Chapter 19—Control Unit Operation and

Microprogrammed Control

Memory system organization and

architectures

Chapter 4—The Memory Hierarchy: Locality and

Performance

Chapter 5—Cache Memory

Chapter 6—Internal Memory Technology

Chapter 7—External Memory

Input/Output interfacing and

communication

Chapter 8—Input/Output

Peripheral subsystems Chapter 3—A Top-Level View of Computer Function

and Interconnection

Chapter 8—Input/Output

Multi/Many-core architectures Chapter 21—Multicore Computers

Distributed system architectures Chapter 20—Parallel Processing

Objectives

This book is about the structure and function of computers. Its purpose is to present, as clearly and
completely as possible, the nature and characteristics of modern-day computer systems.

This task is challenging for several reasons. First, there is a tremendous variety of products that can
rightly claim the name of computer, from single-chip microprocessors costing a few dollars to
supercomputers costing tens of millions of dollars. Variety is exhibited not only in cost but also in size,
performance, and application. Second, the rapid pace of change that has always characterized
computer technology continues with no letup. These changes cover all aspects of computer
technology, from the underlying integrated circuit technology used to construct computer components

to the increasing use of parallel organization concepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental concepts apply
consistently throughout. The application of these concepts depends on the current state of the
technology and the price/performance objectives of the designer. The intent of this book is to provide
a thorough discussion of the fundamentals of computer organization and architecture and to relate
these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always been important to
design computer systems to achieve high performance, but never has this requirement been stronger
or more difficult to satisfy than today. All of the basic performance characteristics of computer
systems, including processor speed, memory speed, memory capacity, and interconnection data
rates, are increasing rapidly. Moreover, they are increasing at different rates. This makes it difficult to
design a balanced system that maximizes the performance and utilization of all elements. Thus,
computer design increasingly becomes a game of changing the structure or function in one area to
compensate for a performance mismatch in another area. We will see this game played out in
numerous design decisions throughout the book.

A computer system, like any system, consists of an interrelated set of components. The system is best
characterized in terms of structure—the way in which components are interconnected, and function
—the operation of the individual components. Furthermore, a computer’s organization is hierarchical.
Each major component can be further described by decomposing it into its major subcomponents and
describing their structure and function. For clarity and ease of understanding, this hierarchical
organization is described in this book from the top down:

Computer system: Major components are processor, memory, I/O.
Processor: Major components are control unit, registers, ALU, and instruction execution unit.
Control unit: Provides control signals for the operation and coordination of all processor
components. Traditionally, a microprogramming implementation has been used, in which major
components are control memory, microinstruction sequencing logic, and registers. More recently,
microprogramming has been less prominent but remains an important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear context. This
should minimize the chance that the reader will get lost and should provide better motivation than a
bottom-up approach.

Throughout the discussion, aspects of the system are viewed from the points of view of both
architecture (those attributes of a system visible to a machine language programmer) and organization
(the operational units and their interconnections that realize the architecture).

Example Systems

This text is intended to acquaint the reader with the design principles and implementation issues of
contemporary operating systems. Accordingly, a purely conceptual or theoretical treatment would be
inadequate. To illustrate the concepts and to tie them to real-world design choices that must be made,
two processor families have been chosen as running examples:

Intel x86 architecture: The x86 architecture is the most widely used for nonembedded computer
systems. The x86 is essentially a complex instruction set computer (CISC) with some RISC
features. Recent members of the x86 family make use of superscalar and multicore design
principles. The evolution of features in the x86 architecture provides a unique case-study of the
evolution of most of the design principles in computer architecture.
ARM: The ARM architecture is arguably the most widely used embedded processor, used in cell
phones, iPods, remote sensor equipment, and many other devices. The ARM is essentially a

reduced instruction set computer (RISC). Recent members of the ARM family make use of
superscalar and multicore design principles.

Many, but by no means all, of the examples in this book are drawn from these two computer families.
Numerous other systems, both contemporary and historical, provide examples of important computer
architecture design features.

Plan of the Text

The book is organized into six parts:

Introduction
The computer system
Arithmetic and logic
Instruction sets and assembly language
The central processing unit
Parallel organization, including multicore

The book includes a number of pedagogic features, including the use of interactive simulations and
numerous figures and tables to clarify the discussion. Each chapter includes a list of key words,
review questions, and homework problems. The book also includes an extensive glossary, a list of
frequently used acronyms, and a bibliography.

Instructor Support Materials

Support materials for instructors are available at the Instructor Resource Center (IRC) for this
textbook, which can be reached through the publisher’s Web site www.pearson.com/stallings. To
gain access to the IRC, please contact your local Pearson sales representative via
www.pearson.com/replocator. The IRC provides the following materials:

Projects manual: Project resources including documents and portable software, plus suggested
project assignments for all of the project categories listed subsequently in this Preface.
Solutions manual: Solutions to end-of-chapter Review Questions and Problems.
PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.
PDF files: Copies of all figures and tables from the book.
Test bank: A chapter-by-chapter set of questions.
Sample syllabuses: The text contains more material than can be conveniently covered in one
semester. Accordingly, instructors are provided with several sample syllabuses that guide the use
of the text within limited time. These samples are based on real-world experience by professors
with the first edition.

Student Resources

For this new edition, a tremendous amount of original supporting material for students has been made
available online. The Companion Web Site, at www.pearson.com/stallings, includes a list of
relevant links organized by chapter and an errata sheet for the book. To aid the student in
understanding the material, a separate set of homework problems with solutions are available at this
site. Students can enhance their understanding of the material by working out the solutions to these
problems and then checking their answers. The site also includes a number of documents and papers
referenced throughout the text.

Projects and Other Student Exercises

For many instructors, an important component of a computer organization and architecture course is a
project or set of projects by which the student gets hands-on experience to reinforce concepts from
the text. This book provides an unparalleled degree of support for including a projects component in
the course. The instructor’s support materials available through the IRC not only includes guidance on
how to assign and structure the projects but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can assign work in the
following areas:

Interactive simulation assignments: Described subsequently.
Research projects: A series of research assignments that instruct the student to research a
particular topic on the Internet and write a report.
Simulation projects: The IRC provides support for the use of the two simulation packages:
SimpleScalar can be used to explore computer organization and architecture design issues.
SMPCache provides a powerful educational tool for examining cache design issues for symmetric
multiprocessors.
Assembly language projects: A simplified assembly language, CodeBlue, is used and
assignments based on the popular Core Wars concept are provided.
Reading/report assignments: A list of papers in the literature, one or more for each chapter, that
can be assigned for the student to read and then write a short report.
Writing assignments: A list of writing assignments to facilitate learning the material.
Test bank: Includes T/F, multiple choice, and fill-in-the-blank questions and answers.

This diverse set of projects and other student exercises enables the instructor to use the book as one
component in a rich and varied learning experience and to tailor a course plan to meet the specific
needs of the instructor and students.

Interactive Simulations

An important feature in this edition is the incorporation of interactive simulations. These simulations
provide a powerful tool for understanding the complex design features of a modern computer system.
A total of 20 interactive simulations are used to illustrate key functions and algorithms in computer
organization and architecture design. At the relevant point in the book, an icon indicates that a
relevant interactive simulation is available online for student use. Because the animations enable the
user to set initial conditions, they can serve as the basis for student assignments. The instructor’s
supplement includes a set of assignments, one for each of the animations. Each assignment includes
several specific problems that can be assigned to students.

Acknowledgments

This new edition has benefited from review by a number of people, who gave generously of their time
and expertise. The following professors provided a review of the entire book: Nikhil Bhargava (Indian
Institute of Management, Delhi), James Gil de Lamadrid (Bowie State University, Computer Science
Department), Debra Calliss (Computer Science and Engineering, Arizona State University),
Mohammed Anwaruddin (Wentworth Institute of Technology, Dept. of Computer Science), Roger
Kieckhafer (Michigan Technological University, Electrical & Computer Engineering), Paul Fortier
(University of Massachusetts Darthmouth, Electrical and Computer Engineering), Yan Zhang
(Department of Computer Science and Engineering, University of South Florida), Patricia Roden
(University of North Alabama, Computer Science and Information Systems), Sanjeev Baskiyar
(Auburn University, Computer Science and Software Engineering), and (Jayson Rock, University of
Wisconsin-Milwaukee, Computer Science). I would especially like to thank Professor Roger
Kieckhafer for permission to make use of some of the figures and performance models from his
course lecture notes.

Thanks also to the many people who provided detailed technical reviews of one or more chapters:
Rekai Gonzalez Alberquilla, Allen Baum, Jalil Boukhobza, Dmitry Bufistov, Humberto Calderón, Jesus
Carretero, Ashkan Eghbal, Peter Glaskowsky, Ram Huggahalli, Chris Jesshope, Athanasios
Kakarountas, Isil Oz, Mitchell Poplingher, Roger Shepherd, Jigar Savla, Karl Stevens, Siri Uppalapati,
Dr. Sriram Vajapeyam, Kugan Vivekanandarajah, Pooria M. Yaghini, and Peter Zeno,

Professor Cindy Norris of Appalachian State University, Professor Bin Mu of the University of New
Brunswick, and Professor Kenrick Mock of the University of Alaska kindly supplied homework
problems.

Aswin Sreedhar of the University of Massachusetts developed the interactive simulation assignments.

Professor Miguel Angel Vega Rodriguez, Professor Dr. Juan Manuel Sánchez Pérez, and Professor
Dr. Juan Antonio Gómez Pulido, all of University of Extremadura, Spain, prepared the SMPCache
problems in the instructor’s manual and authored the SMPCache User’s Guide.

Todd Bezenek of the University of Wisconsin and James Stine of Lehigh University prepared the
SimpleScalar problems in the instructor’s manual, and Todd also authored the SimpleScalar User’s
Guide.

Finally, I would like to thank the many people responsible for the publication of the book, all of whom
did their usual excellent job. This includes the staff at Pearson, particularly my editor Tracy Johnson,
her assistant Meghan Jacoby, and project manager Bob Engelhardt. Thanks also to the marketing and
sales staffs at Pearson, without whose efforts this book would not be in front of you.

About the Author

Dr. William Stallings

has authored 18 textbooks, and counting revised editions, over 70 books on computer security,
computer networking, and computer architecture. In over 30 years in the field, he has been a technical
contributor, technical manager, and an executive with several high-technology firms. Currently, he is
an independent consultant whose clients have included computer and networking manufacturers and
customers, software development firms, and leading-edge government research institutions. He has
13 times received the award for the best computer science textbook of the year from the Text and
Academic Authors Association.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety of subjects of
general interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame in electrical
engineering.

Acronyms

ACM Association for Computing Machinery

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

ASCII American Standards Code for Information Interchange

BCD Binary Coded Decimal

CD Compact Disk

CD-ROM Compact Disk Read-Only Memory

CISC Complex Instruction Set Computer

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

DMA Direct Memory Access

DVD Digital Versatile Disk

EEPROM Electrically Erasable Programmable Read-Only Memory

EPIC Explicitly Parallel Instruction Computing

EPROM Erasable Programmable Read-Only Memory

HLL High-Level Language

I/O Input/Output

IAR Instruction Address Register

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

ILP Instruction-Level Parallelism

IR Instruction Register

LRU Least Recently Used

LSI Large-scale Integration

MAR Memory Address Register

MBR Memory Buffer Register

MESI Modify-Exclusive-Shared-Invalid

MIC Many Integrated Core

MMU Memory Management Unit

MSI Medium-Scale Integration

NUMA Nonuniform Memory Access

OS Operating System

PC Program Counter

PCB Process Control Block

PCI Peripheral Component Interconnect

PROM Programmable Read-Only Memory

PSW Processor Status Word

RAID Redundant Array of Independent Disks

RALU Register/Arithmetic-Logic Unit

RAM Random-Access Memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

SCSI Small Computer System Interface

SMP Symmetric Multiprocessors

SRAM Static Random-Access Memory

SSI Small-Scale Integration

ULSI Ultra Large-Scale Integration

VLIW Very Long Instruction Word

VLSI Very Large-Scale Integration

Part One Introduction

Chapter 1 Basic Concepts and Computer Evolution

1.8 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Explain the general functions and structure of a digital computer.
Present an overview of the evolution of computer technology from early digital computers to the
latest microprocessors.
Present an overview of the evolution of the x86 architecture.
Define embedded systems and list some of the requirements and constraints that various
embedded systems must meet.

1.1 Organization and Architecture

1.2 Structure and Function
Function

Structure

1.3 The IAS Computer

1.4 Gates, Memory Cells, Chips, and Multichip Modules
Gates and Memory Cells

Transistors

Microelectronic Chips

Multichip Module

1.5 The Evolution of the Intel x86 Architecture

1.6 Embedded Systems
The Internet of Things

Embedded Operating Systems

Application Processors versus Dedicated Processors

Microprocessors versus Microcontrollers

Embedded versus Deeply Embedded Systems

1.7 ARM Architecture
ARM Evolution

Instruction Set Architecture

ARM Products

1.1 Organization and Architecture

In describing computers, a distinction is often made between computer architecture and computer
organization. Although it is difficult to give precise definitions for these terms, a consensus exists
about the general areas covered by each. For example, see [VRAN80], [SIEW82], and [BELL78a]; an
interesting alternative view is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a programmer or, put
another way, those attributes that have a direct impact on the logical execution of a program. A term
that is often used interchangeably with computer architecture is instruction set architecture
(ISA) . The ISA defines instruction formats, instruction opcodes, registers, instruction and data
memory; the effect of executed instructions on the registers and memory; and an algorithm for
controlling instruction execution. Computer organization refers to the operational units and their
interconnections that realize the architectural specifications. Examples of architectural attributes
include the instruction set, the number of bits used to represent various data types (e.g., numbers,
characters), I/O mechanisms, and techniques for addressing memory. Organizational attributes
include those hardware details transparent to the programmer, such as control signals; interfaces
between the computer and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have a multiply instruction. It is
an organizational issue whether that instruction will be implemented by a special multiply unit or by a
mechanism that makes repeated use of the add unit of the system. The organizational decision may
be based on the anticipated frequency of use of the multiply instruction, the relative speed of the two
approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organization has been an
important one. Many computer manufacturers offer a family of computer models, all with the same
architecture but with differences in organization. Consequently, the different models in the family have
different price and performance characteristics. Furthermore, a particular architecture may span many
years and encompass a number of different computer models, its organization changing with changing
technology. A prominent example of both these phenomena is the IBM System/370 architecture. This
architecture was first introduced in 1970 and included a number of models. The customer with modest
requirements could buy a cheaper, slower model and, if demand increased, later upgrade to a more
expensive, faster model without having to abandon software that had already been developed. Over
the years, IBM has introduced many new models with improved technology to replace older models,
offering the customer greater speed, lower cost, or both. These newer models retained the same
architecture so that the customer’s software investment was protected. Remarkably, the System/370
architecture, with a few enhancements, has survived to this day as the architecture of IBM’s
mainframe product line.

In a class of computers called microcomputers, the relationship between architecture and organization
is very close. Changes in technology not only influence organization but also result in the introduction
of more powerful and more complex architectures. Generally, there is less of a requirement for
generation-to-generation compatibility for these smaller machines. Thus, there is more interplay
between organizational and architectural design decisions. An intriguing example of this is the
reduced instruction set computer (RISC), which we examine in Chapter 15.

This book text examines both computer organization and computer architecture. The emphasis is
perhaps more on the side of organization. However, because a computer organization must be
designed to implement a particular architectural specification, a thorough treatment of organization
requires a detailed examination of architecture as well.

1.2 Structure and Function

A computer is a complex system; contemporary computers contain millions of elementary electronic
components. How, then, can one clearly describe them? The key is to recognize the hierarchical
nature of most complex systems, including the computer [SIMO96]. A hierarchical system is a set of
interrelated subsystems; each subsystem may, in turn, contain lower level subsystems, until we reach
some lowest level of elementary subsystem.

The hierarchical nature of complex systems is essential to both their design and their description. The
designer need only deal with a particular level of the system at a time. At each level, the system
consists of a set of components and their interrelationships. The behavior at each level depends only
on a simplified, abstracted characterization of the system at the next lower level. At each level, the
designer is concerned with structure and function:

Structure: The way in which the components are interrelated.
Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and building up to a complete
description, or beginning with a top view and decomposing the system into its subparts. Evidence from
a number of fields suggests that the top-down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer system will be described
from the top down. We begin with the major components of a computer, describing their structure and
function, and proceed to successively lower layers of the hierarchy. The remainder of this section
provides a very brief overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. In general terms, there are
only four basic functions that a computer can perform:

Data processing: Data may take a wide variety of forms, and the range of processing
requirements is broad. However, we shall see that there are only a few fundamental methods or
types of data processing.
Data storage: Even if the computer is processing data on the fly (i.e., data come in and get
processed, and the results go out immediately), the computer must temporarily store at least those
pieces of data that are being worked on at any given moment. Thus, there is at least a short-term
data storage function. Equally important, the computer performs a long-term data storage function.
Files of data are stored on the computer for subsequent retrieval and update.
Data movement: The computer’s operating environment consists of devices that serve as either
sources or destinations of data. When data are received from or delivered to a device that is
directly connected to the computer, the process is known as input–output (I/O), and the device is
referred to as a peripheral. When data are moved over longer distances, to or from a remote
device, the process is known as data communications.
Control: Within the computer, a control unit manages the computer’s resources and orchestrates
the performance of its functional parts in response to instructions.

The preceding discussion may seem absurdly generalized. It is certainly possible, even at a top level
of computer structure, to differentiate a variety of functions, but to quote [SIEW82]:

There is remarkably little shaping of computer structure to fit the function to be performed. At the

root of this lies the general-purpose nature of computers, in which all the functional specialization

occurs at the time of programming and not at the time of design.

Structure

We now look in a general way at the internal structure of a computer. We begin with a traditional
computer with a single processor that employs a microprogrammed control unit, then examine a
typical multicore structure.

SIMPLE SINGLE-PROCESSOR COMPUTER

Figure 1.1 provides a hierarchical view of the internal structure of a traditional single-processor
computer. There are four main structural components:

